Faster Bootstrapping with Polynomial Error

نویسندگان

  • Jacob Alperin-Sheriff
  • Chris Peikert
چکیده

Bootstrapping is a technique, originally due to Gentry (STOC 2009), for “refreshing” ciphertexts of a somewhat homomorphic encryption scheme so that they can support further homomorphic operations. To date, bootstrapping remains the only known way of obtaining fully homomorphic encryption for arbitrary unbounded computations. Over the past few years, several works have dramatically improved the efficiency of bootstrapping and the hardness assumptions needed to implement it. Recently, Brakerski and Vaikuntanathan (ITCS 2014) reached the major milestone of a bootstrapping algorithm based on Learning With Errors for polynomial approximation factors. Their method uses the Gentry-Sahai-Waters (GSW) cryptosystem (CRYPTO 2013) in conjunction with Barrington’s “circuit sequentialization” theorem (STOC 1986). This approach, however, results in very large polynomial runtimes and approximation factors. (The approximation factors can be improved, but at even greater costs in runtime and space.) In this work we give a new bootstrapping algorithm whose runtime and associated approximation factor are both small polynomials. Unlike most previous methods, ours implements an elementary and efficient arithmetic procedure, thereby avoiding the inefficiencies inherent to the use of boolean circuits and Barrington’s Theorem. For 2 security under conventional lattice assumptions, our method requires only a quasi-linear Õ(λ) number of homomorphic operations on GSW ciphertexts, which is optimal (up to polylogarithmic factors) for schemes that encrypt just one bit per ciphertext. As a contribution of independent interest, we also give a technically simpler variant of the GSW system and a tighter error analysis for its homomorphic operations. ∗School of Computer Science, College of Computing, Georgia Institute of Technology. Email: [email protected] †School of Computer Science, Georgia Institute of Technology. Email: [email protected]. This material is based upon work supported by the National Science Foundation under CAREER Award CCF-1054495, by the Alfred P. Sloan Foundation, and by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) under Contract No. FA8750-11-C-0098. The views expressed are those of the authors and do not necessarily reflect the official policy or position of the National Science Foundation, the Sloan Foundation, DARPA or the U.S. Government.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrap Test Error Estimations of Polynomial Fittings in Surface Reconstruction

We propose the use of the bootstrap technique for estimating the test error in the context of surface reconstruction from noisy point sets. Validation experiments with polynomial fittings of locally parametrized neighborhoods of noisy point sets give evidence that, in agreement with the theory, the training error underestimates the test error while leave-one-out error overestimates it. Based on...

متن کامل

Fully Homomorphic Encryption without Bootstrapping

We present a radically new approach to fully homomorphic encryption (FHE) that dramatically improves performance and bases security on weaker assumptions. A central conceptual contribution in our work is a new way of constructing leveled fully homomorphic encryption schemes (capable of evaluating arbitrary polynomial-size circuits), without Gentry’s bootstrapping procedure. Specifically, we off...

متن کامل

Bootstrapping and Askey-wilson Polynomials

Abstract. The mixed moments for the Askey-Wilson polynomials are found using a bootstrapping method and connection coe cients. A similar bootstrapping idea on generating functions gives a new Askey-Wilson generating function. Modified generating functions of orthogonal polynomials are shown to generate polynomials satisfying recurrences of known degree greater than three. An important special c...

متن کامل

Efficient algorithms for decoding Reed-Solomon codes with erasures

In this paper, we present a new algorithm for decoding Reed-Solomon codes with both errors and erasures. The algorithm combines an efficient method for solving the Key Equation and a technique which separates the error locator polynomial from the erasure locator polynomial. The new algorithm is compared to two other efficient Reed-Solomon decoding algorithms and shown to be significantly faster...

متن کامل

A Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases

In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014